Recent Changes - Search:

Books / The Art and Science of Logic (ASL) / ASL-Point-i
Daniel Bonevac

Pi

0 Preface? vii
Organization and New Features viii
Traditional areas of Logic
ix
Part I — Reasoning and language
1
1 Truth and validity 2
    1.1 Arguments? 3
    1.2 Recognizing arguments 6
    1.3 Good arguments 17
    1.4 Reliability 20
    1.5 Implication and equivalence 24
    1.6 Logical properties of sentences 29
        1.6.1 Contingent sentences 29
        1.6.2 Tautological sentences 29
        1.6.3 Contradictory sentences 30
        1.6.4 Satisfiable sentences 30
2 Evidence and relevance 37
        2.0.1 Evidence violation
        2.0.2 Relevance violation
    2.1 Begging the question 38
    2.2 Complex questions 43
    2.3 Relevance—refutations 46
        2.3.1 Abusive Ad Hominem 47
        2.3.2 Circumstantial Ad Hominem 48
        2.3.3 Tu Quoque 50
    2.4 Relevance—confusing the issue 56
        2.4.1 Red Herrings 57
        2.4.2 Straw Man 58
3 Grounding? 62
    3.1 Appeals to emotion 64
        3.1.1 Appeal to the People (or Gallery) 65
    3.2 Practical Fallacies 69
        3.2.1 Appeal to Common Practice 70
    3.3 Superficiality 78
        3.3.1 Appeal to Ignorance 78
        3.1.2 Appeal to Authority 79
        3.1.3 Incomplete Enumeration 82
        3.1.4 Accident 83
4 Meaning 90
    4.1 Equivocation 90
    4.2 Amphiboly 93
    4.3 Accent 99
    4.4 Composition and division 101
    4.5 Traditional criteria for definitions
104
Part II Sentential Logic
113
5 Sentences 114
    5.1 Sentence connectives 114
    5.2 A sentential language 117
    5.3 Truth functions 121
    5.4 Symbolization 125
6 Truth tables 139
    6.1 Truth table for formulas 139
    6.2 Other uses of truth tables 145
7 Semantic tableaux 155
    7.1 Rules for Negation, Conjunction and Disjunction 161
        7.1.1 Negation 161
        7.1.2 Conjunction 162
        7.1.3 Disjunction 163
        7.1.4 Policies 164
    7.2 Rules for the conditional and biconditional 167
        7.2.1 →L (Conditional Left) 167
        7.2.2 →R (Conditional Right) 168
        7.2.3 ↔L (Biconditional Left) 168
        7.2.4 ↔R (Biconditional Right) 168
    7.3 Decision procedures 172
        7.3.1 Test for argument form validity (and implication) 173
        7.3.2 Test for equivalence 175
        7.3.3 Test for logical truth 176
        7.3.4 Test for contradiction or satisfiability 176
8 Deduction 186
    8.1 Proofs 186
        8.1.1 Rules of inference 187
        8.1.2 Proof format 187
            8.1.2.1 Proof lines 187
            8.1.2.2 Proof 188
            8.1.2.3 Assumption 188
    8.2 Conjunction and negation rules 188
        8.2.1 Conjunction 188
            8.2.1.1 Simplification (S) 189
            8.2.1.2 Conjunction (C) 190
            8.2.1.3 Consequent Conjunction (CC) 191
        8.2.2 Negation 191
            8.2.2.1 Double negation (DN) 192
        8.2.3 Replacement 192
    8.3 Conditional and biconditional rules 193
        8.3.1 The conditional 193
            8.3.1.1 Modus ponens (MP) 194
            8.3.1.2 Self-implication (SI) 194
        8.3.2 The biconditional 195
            8.3.2.1 Biconditional (B) 195
    8.4 Disjunction rules 197
            8.4.1.1 Addition (Ad) 197
            8.4.1.2 Constructive dilemma (CD) 198
            8.4.1.3 Material conditional
            8.4.1.4 Commutativity of Disjunction (Cm) 199
            8.4.1.5 Associativity of Disjunction (As) 199
    8.5 Rules of Definition 201
        8.5.1 De Morgan’s Laws 201
            8.5.1.1 De Morgan’s Law #1 (DM) 202
            8.5.1.2 De Morgan’s Law #2 (DM) 202
        8.5.2 Rules applying only to entire formulas 203
            8.5.2.1 Assumption 203
            8.5.2.2 Simplification (S) 203
            8.5.2.3 Conjunction (C) 203
            8.5.2.4 Consequent conjunction (CC) 203
            8.5.2.5 Modus ponens (MP) 204
            8.5.2.6 Self-implication (SI) 204
            8.5.2.7 Addition (Ad) 204
            8.5.2.8 Constructive dilemma (CD) 204
        8.5.3 Invertible Rules
            8.5.3.1 Double negation (DN) 204
            8.5.3.2 Biconditional (B) 204
            8.5.3.3 Commutativity of disjunction (Cm) 205
            8.5.3.4 Associativity of disjunction 205
            8.5.3.5 De Morgan’s Law # 1 (DM) 205
            8.5.3.6 De Morgan’s Law # 2 (DM) 205
            8.5.3.7 Material conditional (MC) 205
    8.6 Derived rules 208
        8.6.1 Negations of complex formulas 208
            8.6.1.1 Negated conditional (NC) 209
            8.6.1.2 Negated biconditional (NB) 209
        8.6.2 Order and grouping
            8.6.2.1 Commutativity of conjunction (Cm) 210
            8.6.2.2 Associativity of conjunction (As) 210
            8.6.2.3 Idempotence (I) 211
        8.6.3 Abbreviations 211
            8.6.3.1 Modus tollens (MT) 211
            8.6.3.2 Hypothetical syllogisms (HS) 213
            8.6.3.3 Transposition (Tr) 213
            8.6.3.4 Biconditional exploitation (BE) 214
            8.6.3.5 Disjunctive syllogism (DS) 215
            8.6.3.6 Distribution (D) 215
            8.6.3.7 Weakening (W) 216
            8.6.3.8 Contradiction (!) 216
        8.6.4 Rules applying only to entire formulas
            8.6.4.1 Modus Tollens (MT) 216
            8.6.4.2 Hypothetical Syllogism (HS) 217
            8.6.4.3 Biconditional Exploitation (BE) 217
            8.6.4.4 Disjunctive Syllogism 217
            8.6.4.5 Weakening (W) 217
            8.6.4.6 Contradiction (!) 217
        8.6.5 Invertible Rules 218
            8.6.5.1 Negated Conditional (NC) 218
            8.6.5.2 Negated Biconditional (NB) 218
            8.6.5.3 Commutativity of Conjunction (Cm) 218
            8.6.5.4 Associativity of Conjunction 218
            8.6.5.5 Indempotence (I) 218
            8.6.5.6 Transposition (Tr) 218
            8.6.5.7 Distribution (D) 219
8.6.6 Strategy 219
    8.7 Indirect proof 225
            8.7.1.1 Indirect Proof (Hypothetical) 226
            8.7.1.2 Indirect Proof (Categorical)
226
Part III Predicate Logic
229
9 Syllogisms 230
    9.0 Categorical Syllogism 231
    9.1 Categorical sentences 236
    9.2 Diagramming categorical sentence forms 242
    9.3 Immediate inference 253
    9.4 Syllogisms 263
    9.5 Rules for validity 276
    9.6 Expanding the Aristotelian language 276
10 Quantifiers 289
    10.1 Constants and quantifiers 290
    10.2 Categorical sentence forms 294
    10.3 Polyadic predicates 298
    10.4 The language QL 303
11 Symbolization 311
    11.1 Noun phrases 311
    11.2 Verb phrases 322
    11.3 Definitions 331
12 Quantified tableaux 340
    12.1 Quantifier tableaux rules 340
12.2 Strategies 344
13 Quantified deduction 358
    13.1 Deduction rules for quantifiers 358
    13.2 Universal generalization 366
    13.3 Formulas with overlapping quantifiers 372
    13.4 Quantifiers and connectives
376
Part IV Inductive Reasoning
393
14 Generalizations 394
    14.1 Inductive reliability 395
    14.2 Enumeration 398
    14.3 Evaluating enumerations 400
    14.4 Statistical generalizations 403
    14.5 Analogies 412
15 Causes 425
    15.1 Kinds of causes 425
    15.2 Agreement and difference 431
    15.3 Residues and concomitant variation 440
    15.4 Causal fallacies 447
16 Explanations 450
    16.1 Explanations and hypothetical reasoning 450
    16.2 Scientific theories 458
    16.3 Evaluating explanations
464
[PART V] DEDUCTION STYLES
472
APPENDIX I   DEDUCTION: STYLE TWO 472
A: Sentential Logic 472
    A.1 Proofs 472
    A.2 Conjunction and Negation Rules 475
    A.3 Conditional and Biconditional Rules 481
    A.4 Disjunction Rules 484
    A.5 Derived Rules 486
B: Adding Quantifiers 501
    B.1 Deduction Rules for Quantifiers 501
    B.2 Universal Generalization 506
    B.3 Formulas with Overlapping Quantifiers 508
    B.4 Derived Rules for Quantifiers 512
APPENDIX II   DEDUCTION: STYLE THREE 518
A: Sentential Logic 518
    A.1 Proofs 518
    A.2 Conjunction and Negation Rules 522
    A.3 Conditional and Biconditional Rules 529
    A.4 Disjunction Rules 533
    A.5 Derived Rules 535
B: Adding Quantifiers 551
    B.1 Deduction Rules for Quantifiers 551
    B.2 Universal Proof 556
    B.3 Derived Rules for Quantifiers 557
Bibliography 563
Answers to Selected Problems 565
Index 699

Books / The Art and Science of Logic / Pi

Five Parts:

I Reasoning and Language
II Sentential Logic
III Predicate Logic
IV Inductive Reasoning
[V] DEDUCTION STYLES = schemes

Wikipedia: Free variables and bound variables


Pages Linking to This Page
Edit - History - Print - Recent Changes - Search
Page last modified on October 18, 2021, at 09:31 AM