0 Preface?
| vii
|
Organization and New Features
| viii
|
Traditional areas of Logic
| ix
|
Part I — Reasoning and language
| 1
|
1 Truth and validity
| 2
|
1.1 Arguments?
| 3
|
1.2 Recognizing arguments
| 6
|
1.3 Good arguments
| 17
|
1.4 Reliability
| 20
|
1.5 Implication and equivalence
| 24
|
1.6 Logical properties of sentences
| 29
|
1.6.1 Contingent sentences
| 29
|
1.6.2 Tautological sentences
| 29
|
1.6.3 Contradictory sentences
| 30
|
1.6.4 Satisfiable sentences
| 30
|
2 Evidence and relevance
| 37
|
2.0.1 Evidence violation
|
|
2.0.2 Relevance violation
|
|
2.1 Begging the question
| 38
|
2.2 Complex questions
| 43
|
2.3 Relevance—refutations
| 46
|
2.3.1 Abusive Ad Hominem
| 47
|
2.3.2 Circumstantial Ad Hominem
| 48
|
2.3.3 Tu Quoque
| 50
|
2.4 Relevance—confusing the issue
| 56
|
2.4.1 Red Herrings
| 57
|
2.4.2 Straw Man
| 58
|
3 Grounding?
| 62
|
3.1 Appeals to emotion
| 64
|
3.1.1 Appeal to the People (or Gallery)
| 65
|
3.2 Practical Fallacies
| 69
|
3.2.1 Appeal to Common Practice
| 70
|
3.3 Superficiality
| 78
|
3.3.1 Appeal to Ignorance
| 78
|
3.1.2 Appeal to Authority
| 79
|
3.1.3 Incomplete Enumeration
| 82
|
3.1.4 Accident
| 83
|
4 Meaning
| 90
|
4.1 Equivocation
| 90
|
4.2 Amphiboly
| 93
|
4.3 Accent
| 99
|
4.4 Composition and division
| 101
|
4.5 Traditional criteria for definitions
| 104
|
Part II Sentential Logic
| 113
|
5 Sentences
| 114
|
5.1 Sentence connectives
| 114
|
5.2 A sentential language
| 117
|
5.3 Truth functions
| 121
|
5.4 Symbolization
| 125
|
6 Truth tables
| 139
|
6.1 Truth table for formulas
| 139
|
6.2 Other uses of truth tables
| 145
|
7 Semantic tableaux
| 155
|
7.1 Rules for Negation, Conjunction and Disjunction
| 161
|
7.1.1 Negation
| 161
|
7.1.2 Conjunction
| 162
|
7.1.3 Disjunction
| 163
|
7.1.4 Policies
| 164
|
7.2 Rules for the conditional and biconditional
| 167
|
7.2.1 →L (Conditional Left)
| 167
|
7.2.2 →R (Conditional Right)
| 168
|
7.2.3 ↔L (Biconditional Left)
| 168
|
7.2.4 ↔R (Biconditional Right)
| 168
|
7.3 Decision procedures
| 172
|
7.3.1 Test for argument form validity (and implication)
| 173
|
7.3.2 Test for equivalence
| 175
|
7.3.3 Test for logical truth
| 176
|
7.3.4 Test for contradiction or satisfiability
| 176
|
8 Deduction
| 186
|
8.1 Proofs
| 186
|
8.1.1 Rules of inference
| 187
|
8.1.2 Proof format
| 187
|
8.1.2.1 Proof lines
| 187
|
8.1.2.2 Proof
| 188
|
8.1.2.3 Assumption
| 188
|
8.2 Conjunction and negation rules
| 188
|
8.2.1 Conjunction
| 188
|
8.2.1.1 Simplification (S)
| 189
|
8.2.1.2 Conjunction (C)
| 190
|
8.2.1.3 Consequent Conjunction (CC)
| 191
|
8.2.2 Negation
| 191
|
8.2.2.1 Double negation (DN)
| 192
|
8.2.3 Replacement
| 192
|
8.3 Conditional and biconditional rules
| 193
|
8.3.1 The conditional
| 193
|
8.3.1.1 Modus ponens (MP)
| 194
|
8.3.1.2 Self-implication (SI)
| 194
|
8.3.2 The biconditional
| 195
|
8.3.2.1 Biconditional (B)
| 195
|
8.4 Disjunction rules
| 197
|
8.4.1.1 Addition (Ad)
| 197
|
8.4.1.2 Constructive dilemma (CD)
| 198
|
8.4.1.3 Material conditional
|
|
8.4.1.4 Commutativity of Disjunction (Cm)
| 199
|
8.4.1.5 Associativity of Disjunction (As)
| 199
|
8.5 Rules of Definition
| 201
|
8.5.1 De Morgan’s Laws
| 201
|
8.5.1.1 De Morgan’s Law #1 (DM)
| 202
|
8.5.1.2 De Morgan’s Law #2 (DM)
| 202
|
8.5.2 Rules applying only to entire formulas
| 203
|
8.5.2.1 Assumption
| 203
|
8.5.2.2 Simplification (S)
| 203
|
8.5.2.3 Conjunction (C)
| 203
|
8.5.2.4 Consequent conjunction (CC)
| 203
|
8.5.2.5 Modus ponens (MP)
| 204
|
8.5.2.6 Self-implication (SI)
| 204
|
8.5.2.7 Addition (Ad)
| 204
|
8.5.2.8 Constructive dilemma (CD)
| 204
|
8.5.3 Invertible Rules
|
|
8.5.3.1 Double negation (DN)
| 204
|
8.5.3.2 Biconditional (B)
| 204
|
8.5.3.3 Commutativity of disjunction (Cm)
| 205
|
8.5.3.4 Associativity of disjunction
| 205
|
8.5.3.5 De Morgan’s Law # 1 (DM)
| 205
|
8.5.3.6 De Morgan’s Law # 2 (DM)
| 205
|
8.5.3.7 Material conditional (MC)
| 205
|
8.6 Derived rules
| 208
|
8.6.1 Negations of complex formulas
| 208
|
8.6.1.1 Negated conditional (NC)
| 209
|
8.6.1.2 Negated biconditional (NB)
| 209
|
8.6.2 Order and grouping
|
|
8.6.2.1 Commutativity of conjunction (Cm)
| 210
|
8.6.2.2 Associativity of conjunction (As)
| 210
|
8.6.2.3 Idempotence (I)
| 211
|
8.6.3 Abbreviations
| 211
|
8.6.3.1 Modus tollens (MT)
| 211
|
8.6.3.2 Hypothetical syllogisms (HS)
| 213
|
8.6.3.3 Transposition (Tr)
| 213
|
8.6.3.4 Biconditional exploitation (BE)
| 214
|
8.6.3.5 Disjunctive syllogism (DS)
| 215
|
8.6.3.6 Distribution (D)
| 215
|
8.6.3.7 Weakening (W)
| 216
|
8.6.3.8 Contradiction (!)
| 216
|
8.6.4 Rules applying only to entire formulas
|
|
8.6.4.1 Modus Tollens (MT)
| 216
|
8.6.4.2 Hypothetical Syllogism (HS)
| 217
|
8.6.4.3 Biconditional Exploitation (BE)
| 217
|
8.6.4.4 Disjunctive Syllogism
| 217
|
8.6.4.5 Weakening (W)
| 217
|
8.6.4.6 Contradiction (!)
| 217
|
8.6.5 Invertible Rules
| 218
|
8.6.5.1 Negated Conditional (NC)
| 218
|
8.6.5.2 Negated Biconditional (NB)
| 218
|
8.6.5.3 Commutativity of Conjunction (Cm)
| 218
|
8.6.5.4 Associativity of Conjunction
| 218
|
8.6.5.5 Indempotence (I)
| 218
|
8.6.5.6 Transposition (Tr)
| 218
|
8.6.5.7 Distribution (D)
| 219
|
8.6.6 Strategy
| 219
|
8.7 Indirect proof
| 225
|
8.7.1.1 Indirect Proof (Hypothetical)
| 226
|
8.7.1.2 Indirect Proof (Categorical)
| 226
|
Part III Predicate Logic
| 229
|
9 Syllogisms
| 230
|
9.0 Categorical Syllogism
| 231
|
9.1 Categorical sentences
| 236
|
9.2 Diagramming categorical sentence forms
| 242
|
9.3 Immediate inference
| 253
|
9.4 Syllogisms
| 263
|
9.5 Rules for validity
| 276
|
9.6 Expanding the Aristotelian language
| 276
|
10 Quantifiers
| 289
|
10.1 Constants and quantifiers
| 290
|
10.2 Categorical sentence forms
| 294
|
10.3 Polyadic predicates
| 298
|
10.4 The language QL
| 303
|
11 Symbolization
| 311
|
11.1 Noun phrases
| 311
|
11.2 Verb phrases
| 322
|
11.3 Definitions
| 331
|
12 Quantified tableaux
| 340
|
12.1 Quantifier tableaux rules
| 340
|
12.2 Strategies
| 344
|
13 Quantified deduction
| 358
|
13.1 Deduction rules for quantifiers
| 358
|
13.2 Universal generalization
| 366
|
13.3 Formulas with overlapping quantifiers
| 372
|
13.4 Quantifiers and connectives
| 376
|
Part IV Inductive Reasoning
| 393
|
14 Generalizations
| 394
|
14.1 Inductive reliability
| 395
|
14.2 Enumeration
| 398
|
14.3 Evaluating enumerations
| 400
|
14.4 Statistical generalizations
| 403
|
14.5 Analogies
| 412
|
15 Causes
| 425
|
15.1 Kinds of causes
| 425
|
15.2 Agreement and difference
| 431
|
15.3 Residues and concomitant variation
| 440
|
15.4 Causal fallacies
| 447
|
16 Explanations
| 450
|
16.1 Explanations and hypothetical reasoning
| 450
|
16.2 Scientific theories
| 458
|
16.3 Evaluating explanations
| 464
|
[PART V] DEDUCTION STYLES
| 472
|
APPENDIX I DEDUCTION: STYLE TWO
| 472
|
A: Sentential Logic
| 472
|
A.1 Proofs
| 472
|
A.2 Conjunction and Negation Rules
| 475
|
A.3 Conditional and Biconditional Rules
| 481
|
A.4 Disjunction Rules
| 484
|
A.5 Derived Rules
| 486
|
B: Adding Quantifiers
| 501
|
B.1 Deduction Rules for Quantifiers
| 501
|
B.2 Universal Generalization
| 506
|
B.3 Formulas with Overlapping Quantifiers
| 508
|
B.4 Derived Rules for Quantifiers
| 512
|
APPENDIX II DEDUCTION: STYLE THREE
| 518
|
A: Sentential Logic
| 518
|
A.1 Proofs
| 518
|
A.2 Conjunction and Negation Rules
| 522
|
A.3 Conditional and Biconditional Rules
| 529
|
A.4 Disjunction Rules
| 533
|
A.5 Derived Rules
| 535
|
B: Adding Quantifiers
| 551
|
B.1 Deduction Rules for Quantifiers
| 551
|
B.2 Universal Proof
| 556
|
B.3 Derived Rules for Quantifiers
| 557
|
Bibliography
| 563
|
Answers to Selected Problems
| 565
|
Index
| 699
|