Recent Changes - Search:

edit SideBar Blog | Word | Books  . Page List


Vision: Property Mission: Property Index Tyranny: Communism


Introduction
Everything is Motion
The Error is that Things Exist or Not
Pharmakon
Every "being" is opposite-and-equal force or potential which offsets
Liberalism is next-tier twittery, sarcasm and hypocrisy, i.e., farce


Agency is the error force-and-existence, bigotedly fundamentalistically confirmed by spirit, soul or psyche
Force is the intersubjective field of persons and personifications that are the cancer
Human scapegoating (blaming, shaming and destruction are the error agency and action
Agency is fallacy, self-deception and mental disorder (fsm=force, f)
Fallacy is the errors f as psychology in logic, law, rhetoric and politics


Everything is motion, which is point, time, word and man
Spacetime is time dimensional. That it is space is the error that is the mayhem.
'To exist' is the error force, f
Physical force as explanation of pattern or motion is the error f
The physical universe sums to null
Any non-word words e.g. force, power and control (fpc) are the error f (fpc=f)
Definition as intension and semiotics as extension are the error f
Word is virtual derivative point and motion
Word is 0d actual (a point) and therefore non-actual 3d
3d symbol, 2d index or 1d icon are the point-3d, volume
The icon is the point, line
the index is the point, plane
the symbol is the point, volume
Any idea that words are insufficient is the incompleteness that is the mayhem


The Next-tier Scapegoating Triad? re. The Dark Triad
1. Psychology is Logical Fallacy
2. The Psyche is Self-deception
3. Psychiatry is Mental disorder


Words category


The physical universe as real or imaginary dichotomy is f
Location and dimensions are point
Number is Property
Property is point


Transpersonal systems are authoritarian hierarchy
Introduction
The Evolving Self
Integral Theory
Spiral Dynamics SD
Spiral Dynamics autocracy


The normal and natural institutions are force ismus
Religion is f religionism
Psychology is f psychologism
Science is f scientism
Economics is f econocism
Politics is f politicism
Law is f legalism
Philosophy is f philosophism
Conservation is f conservationism


Progressivism is to conservatism as metastasis is to cancer
The error is f
The inevitable result of f progressivist social justice war is next-tier fascism-and-communism
Conservative fascism is truth-fundamentalism, or eugenics (attrition)
Progressive fascism/communism is lie-fundamentalism, or dysgenics (riot)


Index


Documentation | Page List

TheArtAndScienceOfLogicPi-SideBar

edit SideBar

Books / The Art and Science of Logic- Daniel Bonevac
The Art and Science of Logic Point-i
0 Preface vii
Organization and New Features viii
Traditional areas of Logic ix
Reasoning and language 1
1 Truth and validity? 2
    1.1 Arguments 3
    1.2 Recognizing arguments 6
    1.3 Good arguments 17
    1.4 Reliability 20
    1.5 Implication and equivalence 24
    1.6 Logical properties of sentences 29
        1.6.1 Contingent sentences 29
        1.6.2 Tautological sentences 29
        1.6.3 Contradictory sentences 30
        1.6.4 Satisfiable sentences 30
2 Evidence and relevance 37
        2.0.1 Evidence violation
        2.0.2 Relevance violation
    2.1 Begging the question 38
    2.2 Complex questions 43
    2.3 Relevance—refutations 46
        2.3.1 Abusive Ad Hominem 47
        2.3.2 Circumstantial Ad Hominem 48
        2.3.3 Tu Quoque 50
    2.4 Relevance—confusing the issue 56
        2.4.1 Red Herrings 57
        2.4.2 Straw Man 58
3 Grounding 62
    3.1 Appeals to emotion 64
        3.1.1 Appeal to the People (or Gallery) 65
    3.2 Practical Fallacies 69
        3.2.1 Appeal to Common Practice 70
    3.3 Superficiality 78
        3.3.1 Appeal to Ignorance 78
        3.1.2 Appeal to Authority 79
        3.1.3 Incomplete Enumeration 82
        3.1.4 Accident 83
4 Meaning 90
    4.1 Equivocation 90
    4.2 Amphiboly 93
    4.3 Accent 99
    4.4 Composition and division 101
    4.5 Traditional criteria for definitions 104
II Sentential Logic 113
5 Sentences 114
    5.1 Sentence connectives 114
    5.2 A sentential language 117
    5.3 Truth functions 121
    5.4 Symbolization 125
6 Truth tables 139
    6.1 Truth table for formulas 139
    6.2 Other uses of truth tables 145
7 Semantic tableaux 155
    7.1 Rules for Negation, Conjunction and Disjunction 161
        7.1.1 Negation 161
        7.1.2 Conjunction 162
        7.1.3 Disjunction 163
        7.1.4 Policies 164
    7.2 Rules for the conditional and biconditional 167
        7.2.1 →L (Conditional Left) 167
        7.2.2 →R (Conditional Right) 168
        7.2.3 ↔L (Biconditional Left) 168
        7.2.4 ↔R (Biconditional Right) 168
    7.3 Decision procedures 172
        7.3.1 Test for argument form validity (and implication) 173
        7.3.2 Test for equivalence 175
        7.3.3 Test for logical truth 176
        7.3.4 Test for contradiction or satisfiability 176
8 Deduction 186
    8.1 Proofs 186
        8.1.1 Rules of inference 187
        8.1.2 Proof format 187
            8.1.2.1 Proof lines 187
            8.1.2.2 Proof 188
            8.1.2.3 Assumption 188
    8.2 Conjunction and negation rules 188
        8.2.1 Conjunction 188
            8.2.1.1 Simplification (S) 189
            8.2.1.2 Conjunction (C) 190
            8.2.1.3 Consequent Conjunction (CC) 191
        8.2.2 Negation 191
            8.2.2.1 Double negation (DN) 192
        8.2.3 Replacement 192
    8.3 Conditional and biconditional rules 193
        8.3.1 The conditional 193
            8.3.1.1 Modus ponens (MP) 194
            8.3.1.2 Self-implication (SI) 194
        8.3.2 The biconditional 195
            8.3.2.1 Biconditional (B) 195
    8.4 Disjunction rules 197
            8.4.1.1 Addition (Ad) 197
            8.4.1.2 Constructive dilemma (CD) 198
            8.4.1.3 Material conditional
            8.4.1.4 Commutativity of Disjunction (Cm) 199
            8.4.1.5 Associativity of Disjunction (As) 199
    8.5 Rules of Definition 201
        8.5.1 De Morgan’s Laws 201
            8.5.1.1 De Morgan’s Law #1 (DM) 202
            8.5.1.2 De Morgan’s Law #2 (DM) 202
        8.5.2 Rules applying only to entire formulas 203
            8.5.2.1 Assumption 203
            8.5.2.2 Simplification (S) 203
            8.5.2.3 Conjunction (C) 203
            8.5.2.4 Consequent conjunction (CC) 203
            8.5.2.5 Modus ponens (MP) 204
            8.5.2.6 Self-implication (SI) 204
            8.5.2.7 Addition (Ad) 204
            8.5.2.8 Constructive dilemma (CD) 204
        8.5.3 Invertible Rules
            8.5.3.1 Double negation (DN) 204
            8.5.3.2 Biconditional (B) 204
            8.5.3.3 Commutativity of disjunction (Cm) 205
            8.5.3.4 Associativity of disjunction 205
            8.5.3.5 De Morgan’s Law # 1 (DM) 205
            8.5.3.6 De Morgan’s Law # 2 (DM) 205
            8.5.3.7 Material conditional (MC) 205
    8.6 Derived rules 208
        8.6.1 Negations of complex formulas 208
            8.6.1.1 Negated conditional (NC) 209
            8.6.1.2 Negated biconditional (NB) 209
        8.6.2 Order and grouping
            8.6.2.1 Commutativity of conjunction (Cm) 210
            8.6.2.2 Associativity of conjunction (As) 210
            8.6.2.3 Idempotence (I) 211
        8.6.3 Abbreviations 211
            8.6.3.1 Modus tollens (MT) 211
            8.6.3.2 Hypothetical syllogisms (HS) 213
            8.6.3.3 Transposition (Tr) 213
            8.6.3.4 Biconditional exploitation (BE) 214
            8.6.3.5 Disjunctive syllogism (DS) 215
            8.6.3.6 Distribution (D) 215
            8.6.3.7 Weakening (W) 216
            8.6.3.8 Contradiction (!) 216
        8.6.4 Rules applying only to entire formulas
            8.6.4.1 Modus Tollens (MT) 216
            8.6.4.2 Hypothetical Syllogism (HS) 217
            8.6.4.3 Biconditional Exploitation (BE) 217
            8.6.4.4 Disjunctive Syllogism 217
            8.6.4.5 Weakening (W) 217
            8.6.4.6 Contradiction (!) 217
        8.6.5 Invertible Rules 218
            8.6.5.1 Negated Conditional (NC) 218
            8.6.5.2 Negated Biconditional (NB) 218
            8.6.5.3 Commutativity of Conjunction (Cm) 218
            8.6.5.4 Associativity of Conjunction 218
            8.6.5.5 Indempotence (I) 218
            8.6.5.6 Transposition (Tr) 218
            8.6.5.7 Distribution (D) 219
8.6.6 Strategy 219
    8.7 Indirect proof 225
            8.7.1.1 Indirect Proof (Hypothetical) 226
            8.7.1.2 Indirect Proof (Categorical) 226
III Predicate Logic 229
9 Syllogisms 230
    9.0 Categorical Syllogism 231
    9.1 Categorical sentences 236
    9.2 Diagramming categorical sentence forms 242
    9.3 Immediate inference 253
    9.4 Syllogisms 263
    9.5 Rules for validity 276
    9.6 Expanding the Aristotelian language 276
10 Quantifiers 289
    10.1 Constants and quantifiers 290
    10.2 Categorical sentence forms 294
    10.3 Polyadic predicates 298
    10.4 The language QL 303
11 Symbolization 311
    11.1 Noun phrases 311
    11.2 Verb phrases 322
    11.3 Definitions 331
12 Quantified tableaux 340
    12.1 Quantifier tableaux rules 340
12.2 Strategies 344
13 Quantified deduction 358
    13.1 Deduction rules for quantifiers 358
    13.2 Universal generalization 366
    13.3 Formulas with overlapping quantifiers 372
    13.4 Quantifiers and connectives 376
IV Inductive Reasoning 393
14 Generalizations 394
    14.1 Inductive reliability 395
    14.2 Enumeration 398
    14.3 Evaluating enumerations 400
    14.4 Statistical generalizations 403
    14.5 Analogies 412
15 Causes 425
    15.1 Kinds of causes 425
    15.2 Agreement and difference 431
    15.3 Residues and concomitant variation 440
    15.4 Causal fallacies 447
16 Explanations 450
    16.1 Explanations and hypothetical reasoning 450
    16.2 Scientific theories 458
    16.3 Evaluating explanations 464
APPENDIX I   DEDUCTION: STYLE TWO 472
A: Sentential Logic 472
    A.1 Proofs 472
    A.2 Conjunction and Negation Rules 475
    A.3 Conditional and Biconditional Rules 481
    A.4 Disjunction Rules 484
    A.5 Derived Rules 486
B: Adding Quantifiers 501
    B.1 Deduction Rules for Quantifiers 501
    B.2 Universal Generalization 506
    B.3 Formulas with Overlapping Quantifiers 508
    B.4 Derived Rules for Quantifiers 512
APPENDIX II   DEDUCTION: STYLE THREE 518
A: Sentential Logic 518
    A.1 Proofs 518
    A.2 Conjunction and Negation Rules 522
    A.3 Conditional and Biconditional Rules 529
    A.4 Disjunction Rules 533
    A.5 Derived Rules 535
B: Adding Quantifiers 551
    B.1 Deduction Rules for Quantifiers 551
    B.2 Universal Proof 556
    B.3 Derived Rules for Quantifiers 557
Bibliography 563
Answers to Selected Problems 565
Index 699

Edit - History - Print - Recent Changes - Search
Page last modified on October 09, 2020, at 06:58 AM